Name:

Quiz 4-18 September 2019

Instructions. You have 15 minutes to complete this quiz. You may use your calculator. You may not use any other materials (e.g., notes, homework, books).

Show all your work. To receive full credit, your solutions must be completely correct, sufficiently justified, and easy to follow.

Problem	Weight	Score
1	1	
2	1	
3	1	
4	1	
5	1	
Total		$/ 50$

Recall the national income model from Lesson 7, with marginal propensity to consume $m=\frac{1}{2}$ and accelerator $\ell=\frac{1}{6}$:

$$
\begin{aligned}
T_{n} & =C_{n}+I_{n}+G_{n} \\
C_{n+1} & =\frac{1}{2} T_{n} \\
I_{n+1} & =\frac{1}{6}\left(C_{n+1}-C_{n}\right) \\
G_{n} & =1
\end{aligned}
$$

where at time n, T_{n} is the total national income, C_{n} is the amount of consumer expenditures, I_{n} is the amount of private investment, and G_{n} is the amount of government expenditures. We showed that we can rewrite this model as the following DS:

$$
\begin{equation*}
T_{n+2}=\frac{7}{12} T_{n+1}-\frac{1}{12} T_{n}+1 \quad n=0,1,2, \ldots \tag{*}
\end{equation*}
$$

Problem 1. Find the general solution to the DS (\star).

Problem 2. Suppose $C_{0}=4$ and $I_{0}=5$. Find the IC for the DS ($*$).

For Problems 3, 4 and 5, consider the following DS:

$$
A_{n+2}=\frac{1}{2} A_{n+1}-\frac{3}{64} A_{n}+35 \quad n=0,1,2, \ldots
$$

The general solution to the $\mathrm{DS}(* *)$ is

$$
A_{n}=c_{1}\left(\frac{1}{8}\right)^{n}+c_{2}\left(\frac{3}{8}\right)^{n}+64
$$

Problem 3. Show that the fixed point of the DS $(\star \star)$ is 64 .

Problem 4. Is the system stable, unstable, or neither? Briefly explain.

Problem 5. Is the fixed point 64 attracting, repelling, or neither? Briefly explain.

The general solution of the second order linear DS $A_{n+2}=a A_{n+1}+b A_{n}+c, n=0,1,2, \ldots$ is

$$
\begin{array}{ll}
A_{n}=c_{1} r^{n}+c_{2} s^{n}+\frac{c}{1-a-b} & \text { if } a+b \neq 1 \text { and } r \neq s \\
A_{n}=\left(c_{1}+c_{2} n\right) r^{n}+\frac{c}{1-a-b} & \text { if } a+b \neq 1 \text { and } r=s \\
A_{n}=c_{1}(a-1)^{n}+c_{2}+\frac{c}{2-a} n & \text { if } a+b=1 \text { and } a \neq 2 \\
A_{n}=c_{1}+c_{2} n+\frac{c}{2} n^{2} & \text { if } a+b=1 \text { and } a=2, b=-1
\end{array}
$$

where r and s are the roots of the characteristic equation $x^{2}=a x+b$.

